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Abstract. In this paper, we evaluate and compare algorithms for scheduling and
clustering. These algorithms allocate a parallel program represented by an edge-weighted
directed acyclic graph (DAG), also called a task graph or macro-dataflow graph, to a set
of homogeneous processors, to minimize the completion time. We examine several such
classes of such algorithms and compare the performance of a class of algorithms known
as the arbitrary processor network (APN) scheduling algorithms. We discuss the design
philosophies and principles behind these algorithms and assess their merits and
deficiencies. Experimental results have been obtained by testing the algorithms with a
large number of test cases. Global and pair-wise comparisons are made within each
group whereby these algorithms are ranked according to their performance.

1. Introduction
Scheduling and mapping of computations onto the processors is one of the crucial

components of a parallel processing environment. Since the scheduling problem is NP-
complete in its general forms [5] and optimal solutions are known only in restricted cases [3],
[7], there has been considerable research effort in this area resulting in a myriad of heuristic
algorithms. This work surveys static scheduling algorithms that schedule an edge-weighted
directed acyclic graph (DAG), which is also called a task graph or macro-dataflow graph, to a
set of homogeneous processors, to minimize the completion time or schedule length. We
examine three classes of algorithms: Bounded Number of Processors (BNP) scheduling
algorithms, Unlimited Number of Clusters (UNC) scheduling algorithms, and Arbitrary
Processor Network (APN) scheduling algorithms. We provide qualitative analyses by
examining the design philosophies and characteristics of these algorithms that can ensue
some future guidelines for designing even better heuristics. Performance comparisons are
made for the APN algorithms. Experimental results, using a large number of test cases, have
been obtained by testing four APN algorithms. Global and pair-wise comparisons are made
within each group whereby these algorithms are ranked according to their performance.

The paper is organized as follows. In the next section, we describe the generic DAG
model and discuss its variations and suitability to different situations. We describe the basic
strategies of scheduling algorithms in Section 3. The BNP and UNC algorithms are discussed
in Section 4 and Section 5, respectively. The four APN algorithms are discussed in Section 4.
Performance results and comparisons are presented in Section 7. Section 8 concludes the
paper.

2. The DAG Model
The DAG is a generic model of a parallel program consisting of a set of processes among

which there are dependencies. Each process is an indivisible unit of execution, expressed by
an atomic node. An atomic node has one or more inputs. When all inputs are available, the
node is triggered to execute. After its execution, it generates its outputs. In this model, a set of
v nodes are connected by a set of e directed edges, each of which is denoted
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by , where is called the parent and is called the child. A node without parent is
called an entry node and a node without child is called an exit node. The weight of a node,
denoted by , is equal to the process execution time. Since each edge corresponds to a
message transfer from one process to another, the weight of an edge, denoted by , is
equal to the message transmission time. Thus, becomes zero when and are
scheduled to the same processor because intraprocessor communication time is negligible
compared with the interprocessor communication time. The node and edge weights are
usually obtained by estimation [19]. Some variations in the generic DAG model are described
below.

Accurate model — In an accurate model, the weight of a node includes the computation
time, the time to receive messages before the computation, and the time to send messages
after the computation. The weight of an edge is a function of the distance between the source
and the destination nodes, and therefore, depends on the node allocation and network
topology. It also depends on network contention which can be difficult to model. When two
nodes are assigned to a single processor, the edge weight becomes zero, so as the message
receiving time and sending time.

Approximate model 1 — In this model, the edge weight is approximated by a constant,
independent of the message transmission distance and network contention. A completely
connected network without contention fits this model.

Approximate model 2 — In this model, the message receiving time and sending time are
ignored in addition to approximating the edge weight by a constant.

These approximate models are best suited to the following situations: (i) the grain-size of
the process is much larger than the message receiving time and sending time; (ii)
communication is handled by some dedicated hardware so that the processor spends
insignificant amount of time on communication; (iii) the message transmission time varies
little with the message transmission distance, e.g., in a wormhole or circuit switching
network; and (iv) the network is not heavily loaded.

In general, the approximate models can be used for medium to large granularity, since the
larger the process grain-size, the less the communication, and consequently the network is
not heavily loaded. The second reason for using the approximate models is that both the
node and edge weights are obtained by estimation, which is hardly accurate. Thus, an
accurate model is useless when the weights of nodes and edges are not accurate.

3. Basic Scheduling Strategies
A DAG can be scheduled to a network of processors in two ways:
Direct mapping: The DAG is directly mapped to the given network topology, using the

accurate model. In this paper, we focus on the APN algorithms (will be discussed in
Section 4), which are designed for direct mapping.

Indirect mapping: The DAG is scheduled to processors using one of the approximate
models, ignoring the processor network topology (assumed to be fully-connected); then the
processors are mapped to the given topology. The latter step is called topology mapping, which
is a technique for alleviating the impact of network contention.

Most scheduling algorithms are based on the list scheduling technique [1], [8], [9], [17],
[18]. List scheduling is a class of scheduling heuristics in which the nodes are assigned
priorities and placed in a list arranged in a descending order of priority. The node with a
higher priority will be examined for scheduling before a node with a lower priority. If more
than one node has the same priority, ties are broken using some method.

Two major attributes for assigning priority are the t-level (top level) and b-level (bottom
level). The t-level of a node ni is the length of the longest path from an entry node to ni in the
DAG (excluding ni). Here, the length of a path is the sum of all the node and edge weights
along the path. The t-level of ni highly correlates with ni’s earliest start time, denoted by

, which is determined after ni is scheduled to a processor. The b-level of a node ni is the
length of the longest path from node ni to an exit node. The b-level of a node is bounded by the
length of the critical path. A critical path (CP) of a DAG, is a path from an entry node to an exit
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node, whose length is the maximum. The t-level of a node is inherently a dynamic attribute
because the weight of an edge may be zeroed when the two incident nodes are scheduled to
the same processor. Thus, the path reaching a node, whose length determines the t-level of the
node, may cease to be the longest one. On the other hand, there are some variations in the
computation of the b-level of a node. Most algorithms examine a node for scheduling only
after all the parents of the node have been scheduled. In this case, the b-level of a node is a
constant until after it is scheduled to a processor. Some scheduling algorithms allow the
scheduling of a child before its parents [14], [19]. In that case, the b-level of a node is also a
dynamic attribute. In these scheduling algorithms, the value of for any node ni is not
fixed until all the nodes are scheduled. Doing so can allow the insertion of a node to a time
slot created by pushing some earlier scheduled nodes downward. It should be noted that
some scheduling algorithms do not take into account the edge weights in computing the b-
level [10], [16]. To distinguish such definition of b-level from the one we described above, we
call it the static b-level. These algorithms are further classified into three categories descrbed
below.

4. BNP Scheduling Algorithms
These algorithms schedule the DAG to a bounded number of processors directly. The

processors are assumed to be fully-connected. Most BNP scheduling algorithms are based on
the list scheduling technique [1], [8]. List scheduling is a class of scheduling heuristics in which
the nodes are assigned priorities and placed in a list arranged in a descending order of
priority. The node with a higher priority will be examined for scheduling before a node with
a lower priority. If more than one node has the same priority, ties are broken using some
method.

Two major attributes for assigning priority are the t-level (top level) and b-level (bottom
level). The t-level of a node ni is the length of the longest path from an entry node to ni in the
DAG (excluding ni). Here, the length of a path is the sum of all the node and edge weights
along the path. The t-level of ni highly correlates with ni’s earliest start time, denoted by

, which is determined after ni is scheduled to a processor. The b-level of a node ni is the
length of the longest path from node ni to an exit node. The b-level of a node is bounded by the
length of the critical path. A critical path (CP) of a DAG, is a path from an entry node to an exit
node, whose length is the maximum. Examples of BNP algorithms are the HLFET (Highest
Level First with Estimated Times) algorithm [1], the MCP (Modified Critical Path) algorithm
[19], and the DLS (Dynamic Level Scheduling) algorithm [18].

5. UNC Scheduling Algorithms
These algorithms schedule the DAG to an unbounded number of clusters. The processors

are assumed to be fully-connected. The technique employed by these algorithms is also called
clustering. The basic technique employed by the UNC scheduling algorithms is called
clustering. At the beginning of the scheduling process, each node is considered as a cluster. In
the subsequent steps, two clusters are merged if the merging reduces the completion time.
This merging procedure continues until no cluster can be merged. Usually, no backtracking is
allowed in order to avoid formidable time complexity.

The clustering strategy is particularly designed for DAGs with non-zero edge weights. If
all edge weights are zero, the CP length of the original DAG gives the shortest completion
time. The clustering process is so designed that when two clusters are merged and the
weights of the edges across the two clusters are zeroed, the new CP length of the resulting
DAG becomes shorter than the one before the merging. An optimal clustering results in a
number of clusters such that the CP length of the clustered DAG cannot be further reduced.
At this point, the completion time is minimized. In order to facilitate the subsequent cluster
mapping step, the secondary goal of the UNC scheduling algorithms is to minimize the
number of clusters. Examples of UNC algorithms are the EZ (Edge-zeroing) algorithm [16],
the DSC (Dominant Sequence Clustering) algorithm [6], the MD (Mobility Directed)
algorithm [19] and the DCP (Dynamic Critical Path) algorithm [14].
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6. APN Scheduling Algorithms
The algorithms in this class take into account specific architectural features such as the

number of processors as well as their interconnection topology. These algorithms can
schedule tasks on the processors and messages on the network communication links.
Scheduling of messages may be dependent on the routing strategy used by the underlying
network. The mapping, including the temporal dependencies, is therefore implicit — without
going through a separate clustering phase. There are not many reported algorithms that
belong to this class. In the following, we discuss four such algorithms..

6.1  The MH Algorithm
The MH (Mapping Heuristic) algorithm [4] assigns priorities by computing the static b-

levels of all nodes. In calculating the start time of node, a routing table is maintained for each
processor. The table contains the information as to which path to route messages from the
parent nodes to the nodes under consideration. The shortcoming of the algorithm is the way
it orders nodes for scheduling. Since it appends ready nodes to the ready list instead of
inserting the nodes at appropriate positions in the list, a newly ready node, which may have
higher priority, may get scheduled later than the lower priority nodes. The MH algorithm is
briefly described below. Its complexity is shown to be .

(1) Compute the static b-level of each node ni in the task graph.
(2) Initialize a ready node list by inserting all entry nodes in the task graph. The list is

ordered according to node priorities, with the highest priority node first.
Repeat
(3) ni ← the first node in the list
(4) Schedule ni to the processor which gives the smallest start time.
(5) Append all ready successor nodes of ni, according to their priorities, to the ready

node list.
Until the ready node list is empty.

6.2  The DLS Algorithm
The DLS (Dynamic Level Scheduling) algorithm [18] uses an attribute called the dynamic

level (DL). The DL is defined as the difference between the static b-level of a node and its t-level
on a processor. Thus, the DL is an attribute for a node-processor pair. The DLS algorithm first
computes the static b-level for each node and then computes the DL for every node in the
ready pool on all processors. The DLS algorithm requires the message routing method to be
supplied by the user. The t-level of a node is then computed according to how the messages
from the parents of the node are routed. The node-processor pair that gives the largest value
of DL is selected for scheduling. The DLS algorithm is briefly described below. Its time
complexity is shown to be .

(1) Calculate the b-level of each node.
(2) Initially, the ready node pool includes only the entry nodes.
Repeat
(3) Calculate the earliest start time for every ready node on each processor. Hence,

compute the DL of every node-processor pair by subtracting the earliest start time
from the node’s static b-level.

(4) Select the node-processor pair that gives the largest DL. Schedule the node to the
corresponding processor.

(5) Add the newly ready nodes to the ready pool.
Until all nodes are scheduled.

6.3  The BU Algorithm
The BU (Bottom-Up) algorithm [15] first finds out the CP of the DAG and then assigns all

the nodes on the CP to the same processor at once. Afterwards, the algorithm assigns the
remaining nodes in a reversed topological order to the processors. The node assignment is
guided by a load-balancing processor selection heuristic which attempts to balance the load
across all given processors. After all the nodes get assigned a processor, the BU algorithm
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tries to schedule the communication messages among them using a channel allocation
heuristic which tries to keep the hop count of every message roughly a constant constrained
by the processor network topology. Different network topology requires different channel
allocation heuristics. The main weakness of the BU algorithm is due to its method of
assigning nodes to processors. It is obvious that achieving a balanced load across all
processors is usually in conflict with the goal of minimizing the completion time. The BU
algorithm is briefly described below. Its time complexity is shown to be .

(1) Find a critical path. Assign the nodes on the critical path to the same processor.
Mark these nodes as assigned and update the load of the processor.

(2) Compute the b-level of each node. If the two nodes of an edge are assigned to the
same processor, the communication cost of the edge is taken to be zero.

(3) Compute the p-level (precedence level) of each node, which is defined as the
maximum number of edges along a path from an entry node to the node.

(4) In a decreasing order of p-level, for each value of p-level, do:
(a) In a decreasing order of b-level, for each node at the current p-level, assign the

node to a processor such that the processing load is balanced across all the
given processors.

(b) Re-compute the b-levels of all nodes.
(5) Schedule the communication messages among the nodes such that the hop count of

each message is maintained constant.

6.4  The BSA Algorithm
The BSA (Bubble Scheduling and Allocation) algorithm [13] constructs a schedule

incrementally by first injecting all the nodes to the pivot processor, defined as the processor
with the highest degree. Then, the algorithm tries to improve the start time of each node
(hence “bubbling” up nodes) by migrating it to one of the adjacent processor of the pivot
processor if the migration can improve the start time of the node. Essentially, after a node is
migrated from pivot processor to another processor, not only the node itself is “bubbled up”
but its successors as well. This is because after a node is migrated, the space it occupies on the
pivot processor is released and can be used for its successor nodes on the pivot processor. After
all nodes on the pivot processor are considered, select the next processor in the processor list to
be the new pivot processor. The process is repeated by changing the pivot processor in a breadth
first order. The BSA algorithm is self-adjusting in that it analyses the structure of the target
topology before scheduling starts. This can greatly enhance the accuracy of the subsequent
scheduling process. This is because important nodes will not be scheduled (migrated) to
inappropriate processors (processors that have low degrees or are remote from the first pivot
processor). The BSA algorithm is briefly described below. Its complexity is .

(1) Determine a Critical Path.
(2) Partition the task graph into three categories: CPNs (Critical Path Nodes), IBN (In-

Branch Nodes) and OBNs (Out-Branch Nodes).
(3) Serialize the task graph to the pivot processor (defined as the processor with the

largest number of links). The task graph is serialized in such an order that the CPNs
start as early as possible.

(4) Migrate the tasks to adjacent processors of the pivot processor if the start times
improve.

(5) Change the pivot processor to one of the adjacent processor in a breadth-first order.
(6) Repeat from step (4) until no more start time can be improved.

7. Performance and Comparison
In this section, we present a performance comparison of the APN scheduling algorithms

described above. The algorithms were tested on a SUN SPARC IPX workstation. The
performance comparison is based on the schedule length. We compare the normalized
schedule lengths generated by the algorithms. The experimental results were obtained by
using a set of 250 random task graphs which were generated as follows. The size of the graph
was varied from 50 to 500 nodes with increments of 50. The weight of each node was
randomly selected from a uniform distribution with mean equal to the specified average
computation cost. The weight of each edge was also randomly selected from a uniform
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distribution with mean equal to the product of the average computation cost and the
communication-to-computation ratio (CCR). Five different values of CCR were selected: 0.1,
0.5, 1.0, 2.0 and 10.0. We also used another parameter called parallelism in generating the
random task graphs. This parameter determined the average number of children nodes for
each node. Five different values of parallelism were chosen: 1, 2, 3, 4 and 5.

The normalized schedule lengths (NSLs) for the APN algorithms are shown in Figure 1,
Figure 1, and Figure 1. Each bar in the figure is the average of 25 cases with various values of

Figure 1: The average normalized schedule lengths produced by the APN scheduling
algorithms for task graphs of various sizes on a 4x2 mesh.

Figure 2: The average normalized schedule lengths produced by the APN scheduling
algorithms for task graphs of various sizes on a 8-node hypercube.

Figure 3: The average normalized schedule lengths produced by the APN scheduling
algorithms for task graphs of various sizes on a 8-node clique.



CCR and parallelism; the results showing the impact of CCR — and hence granularity — and
the impact of parallelism is not included here due to space limitations. The NSLs were
obtained by dividing the schedule lengths produced by each algorithm to the lower bounds,
defined as the sum of node weights on the original critical path. It should be noted that the
lower bounds may not always be possible to achieve, and the optimal schedule length may
be longer than this bound. The target architectures for these tests included an 8-node
hypercube, a mesh, and an 8-node clique. One reason for the large values of NSLs in
these cases is that the numbers of processors used were much smaller. We deliberately used
very small number of processors to make the experiments more realistic. For example, a 500-
node task graph is scheduled to 8 processors.

These results suggest that there can be substantial difference in the performance of these
algorithms. For example, significant differences can be noticed between the NSLs of BSA and
BU. The performance of DLS was relatively stable with respect to the graph size while MH
yielded fairly long schedule lengths for large graphs. As can be noticed, the BSA algorithm
performed admirably well for large graphs. One of the main reasons for the better
performance of BSA is efficient scheduling of communication messages that can have a
drastic impact on the overall schedule length. In terms of the impact of the topology, clearly
all algorithms performed better on the networks with more communication links.

Next we present a pair-wise and a global comparison among these algorithms by
observing the number of times each algorithm performed better, worse or the same
compared to every other algorithm in 250 test cases. This comparison is given in a graphical
form shown in Figure 4. Here, each box compares two algorithms — the algorithm on the left
side and the algorithm on the top. Each box contains three numbers preceded by ‘>’, ‘<‘ and
‘=’ signs which indicate the number of times the algorithm on the left performed better,
worse, and the same, respectively, compared to the algorithm shown on the top. For example,
the BSA algorithm performed better than the MH algorithm in 840 cases, worse in 160 cases
and the same in 0 case. For the global comparison, an additional box (“ALL”) for each
algorithm compares that algorithm with all other algorithms combined. Based on these
results, we rank these BNP algorithms in the following order: BSA, DLS, MH, and BU. This
ranking essentially indicates the quality of scheduling based on how often an algorithm
performs better than the others, while the ranking with respect to NSLs indicates the quality
of scheduling based on the average performance of the algorithm. An algorithm which
outperforms other algorithms more frequently but has a lower rank based on the average
NSL indicates that it produces very long schedule lengths in some cases. BSA outperformed
the other three algorithms in a large number of cases while DLS performed better than MH.
The BU algorithm was outperformed by all other algorithms.

8. Conclusions and Future Work
The APN algorithms can be fairly complicated because they take into account more

parameters. Further research is required in this area. The effects of topology and routing
strategy needs to be determined. Further details on the performance of APN algorithms can
be found in [12]. A number of research prototypes have been designed and implemented,
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Figure 4: A comparison of the APN scheduling algorithms in terms
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showing good performance on a group of carefully selected examples. The current researches
concentrate on further elaboration of various techniques, such as reducing the scheduling
complexities, improving computation estimations, and incorporating network topology and
communication traffic.
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